Surface storage dynamics in large rivers: Comparing three-dimensional particle transport, one-dimensional fractional derivative, and multirate transient storage models
نویسندگان
چکیده
[1] Large rivers are major conduits for sediment and nutrient transport and play an important role in global biogeochemical cycles. While smaller rivers received attention in recent decades for hyporheic exchange and nutrient uptake, fewer studies have focused on the dynamics of surface storage zones in large rivers. We investigate transport dynamics in the St. Clair River, an international river straddling the U.S.–Canadian border, using a combination of modeling and dye tracer studies. We describe a calibrated three-dimensional hydrodynamic model to generate (synthetic) breakthrough data to evaluate several classes of 1-D solute transport models for their ability to describe surface storage dynamics. Breakthrough data from the 3-D particle transport model exhibited multimodal behavior and complex dynamics that could not be described using a single first-order exchange coefficient—an approach often used to describe surface storage in transient storage models for small rivers. The 1-D models examined include multirate transient storage (MRTS) models in which storage zones were arranged either in series or parallel as well as 1-D models based on fractional derivatives. Results indicate that for 1-D models to describe data adequately, the timing of solute pulses that correspond to various in-channel features such as sandbars, islands or meander bends should be taken into account. As a result, the MRTS model with storage zones arranged in series (i.e., exchange rates triggered sequentially) provided the best description of the data. In contrast, fractional derivative models that assume storage zones were arranged in parallel failed to capture the multimodal nature of the breakthrough curves.
منابع مشابه
Prediction of Sediment Transport Capacity in Rivers Using Quasi Two-Dimensional Mathematical Model
Sediment rating curve is an essential factor for many river engineering subjects and computations such as dredging, design of storage dams, river intakes design and sand mining management. Although, this curve is established using simultaneous measurement of flow and sediment transport discharges, however, due to lack of reliable data during flood events, it has limited reliability in flood con...
متن کاملDimensional Similarity in the Study of Microbubble Production Inside Venturi Tube
The present study considers of the water and air flow and Micro-Bubble production inside the venturi tube, by the use of dimensional analysis. Numerical analysis of Micro-Bubble creation in venturi tube requires fast computers and large amounts of storage space. Up to now, there has been no numerical analysis concerning Micro-Bubble creation and all other existing studies are experimental. To s...
متن کاملUsing OTIS to Model Solute Transport in Streams and Rivers
Solute transport in streams and rivers is governed by a suite of hydrologic and geochemical processes. Knowledge of these processes is needed when assessing the fate of contaminants that are released into surface waters. The study of solute fate and transport often is aided by solute transport models that mathematically describe the underlying processes. This fact sheet describes a model that c...
متن کاملTransient Two-Dimensional (r-z) Cyclic Charging/Discharging Analysis of Space Thermal Energy Storage Systems (RESEARCH NOTE)
A two-dimensional transient axi-symmetric model was developed to study the effects of various thermal and geometric parameters on cyclic heating and cooling modes of a phase-change thermal energy storage system. The high-temperature thermal energy storage device utilizes LiH for heat sink applications to store the waste heat generated during power-burst periods. The stored heat is then discharg...
متن کاملTHREE DIMENSIONAL MODELING OF TURBULENT FLOW WITH FREE SURFACE IN MOLD FILLING
In the present study a Finite Difference Method has been developed to model the transient incompressible turbulent free surface fluid flow. A single fluid has been selected for modeling of mold filling and The SOLA VOF 3D technique was modified to increase the accuracy of simulation of filling phenomena for shape castings. For modeling the turbulence phenomena k-e standard model was used. In or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011